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Behavioral stochastic resonance: How a noisy army betrays its outpost

Jan A. Freund, Jochen Kienert, and Lutz Schimansky-Geier
Institut fir Physik, Humboldt-Universitazu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

Beatrix Beisner
Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin 53706

Alexander Neiman, David F. Russell, Tatyana Yakusheva, and Frank Moss
Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121
(Received 20 August 2000; published 27 February 2001

Juvenile paddlefish prey upon single zooplankton by detecting a weak electric signature resulting from its
feeding and swimming motions. Moreover, it has recently been shown that paddlefish make use of stochastic
resonance near the threshold for prey detection: a process termed behavioral stochastic resonance. But this
process depends upon an external source of electric noise. A swarm of plankton, for eXxzappleia can
provide this noise. Assuming that juvenile paddlefish attack sibglehniaas outliers in the vicinity of the
swarm, making use of noise from the swarm, we calculate the spatial distribution of the average phase locking
period for the subthreshold signals acting at the paddlefish rostrum. Numeric evaluation of analytic formulas
supports the notion of a noise-induced widening of the capture area quantitatively.
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[. INTRODUCTION and/or captured. But weak signals from distant sirigggh-
nia can be enhanced, and consequently the probability that
We have recently shown that juvenile paddlefiBo)yo-  they are captured, by an external noise soldde In Ref.
don Spathulamake use of stochastic resonari&®) in the  [1], we applied a uniform electric noise field parallel to the
detection and capture of planktonic prey at the threshold ofostrum in order to demonstrate behavioral SR. Here we in-
their perceptior{1]. Prey are detected, tracked, and locatedvestigate the possibility, already suggested in Ref.that a
exclusively by means of an elaborate array of electrorecepswarm of.Daphnlacan. provide the necessary source of ex-
tors spread over the animal’s rostrum, or paddle shaped nost&rnal noise in the wild. Thus the noise from an army of
like appendagep0|yodon Spathu|as a pnmmve creature Daphniacan help to reveal the locations of its OUtpOStS.
whose fossil record extends into the Cretaceous pei&d SR has its roots in notions about global climate dynamics
million years agd[2]. This, together with some recent physi- Put forth in the early 1980§6]. A large interest in SR has
ological evidence[3], suggests that behavioral SR is anarisen, especially since its introduction into experimental
evolved survival strategy. The paddlefish, which is foundSensory biology{ 7] and its obsgrvatlon in membrane ion
only in the river basins of the Midwestern United States angehanneld8]. It has been the subject of a repf®] and sev-
in the Yangtze River in China, feeds exclusively on zoo-€eral reviews[10]. In the simplest view, called threshold, or
plankton. Moreover, paddlefish are largely bottom feedersiondynamical SR11], only three ingredients are necessary:
where the light is poor and where, in turbulent, silt-laden@ threshold, a subthreshold signal, and noise. Originally,
waters, vision is limited. In order to survive in this environ- however, SR was described as noise-induced switching of
ment, they have evolved the aforementioned electrosensofie state point in a bistable potentjaP], and this is the view
system. Juvenile paddlefigtess than one year oldocate, We take here. Indeed, in the original biological application of
track, and feed on sing'e p|anktcﬁ4]1 whereas older fish, SR, the information contained in the barrier CrOSSingS of the
after having developed gill rakers, filter feed on swarms. ~State point in a weakly, periodically modulated bistable po-
The Daphniag a plankton of 1 to 2 mm in length com- tential provided the first quantitative explanation of the fa-
monly found in North American fresh water, is a favorite Mous phase locking phenomenon widely observed in sensory
food of the paddlefishDaphnia emit weak dipole-shaped biology[13]. Example data from the auditory nerve fibers of
electric signals with both oscillator4—8 H2 and dc com- the squirrel monkey and from the visual cortex of the cat
ponents. Though the dc component is much larger, we her¢ere presented in support of that explanation.
study only detection of the ac component by means of sto- We consider an outlieDaphnia in the vicinity of the
chastic synchronization. Due to the dipole-like shape of théwarm as the source of a weak periodic signal. The signal
field, the intensity of @aphniasignal at the fish's rostrum is from this single Daphnia is detected at the rostrum of a
expected to drop off rapidly with distance. Indeed, it haspaddlefish. The swarm is assumed to be sphencal with diam-
recently been shown, using the dipole characteristi¢ 1/ €terA=100 cm. In the reference frames of the sinDkeph-
drop-off, that the capture probability with distance exhibitednia and the center of the swarm, the two vectorand R
by the fish mimics the Fisher information on its rostrum fromrepresent the distances to the paddlefish rostrum, respec-
a singleDaphnia[5]. Daphniathat appear at a larger dis- tively. For a schematic setup of this scenario see Fig. 1.
tance from the fish’s rostrum are less likely to be detected At the rostrum, noise from the swarm is added to the

1063-651X/2001/6()/03191@11)/$15.00 63 031910-1 ©2001 The American Physical Society



JAN A. FREUNDet al. PHYSICAL REVIEW E 63 031910

single daphnia to the signal period, thus yieldin@yc) = Q(Tjoe/2m. We
dipole_ﬁd emphasize that our synchronization approach is nonlinear in

nature. The nonlinearity of the synchronization theory
[14,15 is necessary in order to account for the dependence
of the output on signal amplitude or distance to Brephnia

In Sec. Il we briefly describe the swarming behavior of
Daphniapopulations and outline some current ideas regard-
ing their interactions with one another. In Sec. lll we display
the characteristics of the signal from a sin@laphniaand
the noise from @aphniaswarm. We then outline in Sec. IV
the theory of effective phase locking and show how) is

calculated from knowledge of the average frequefigyand
effective diffusion coefficienD of a phase difference. In a

twice dichotomic signal descriptiofk) and D can be ex-
FIG. 1. The setup of the predator-prey-noise system.Odegh-  pressed via two rates; anda, (Sec. V) which, in turn, are
nia swarm which is assumed to be spherical provides the noisgletermined by the signal amplitudeand the noise intensity
background. The geometry is specified by the two distance vectorp. The dependence @ andD on geometrical distances is
r andR, the extension of a singlBaphnia d and the diameter of derived in Sec. VI. In Sec. VII we apply these calculations to
the DaphniaswarmA. The singleDaphniadipole is indicated by a  the detection problem faced by a juvenile paddlefish seeking
little arrow. to capture a singldaphniain the vicinity of the swarm.
) _ _ _ . Contours of constantn,g) in the neighborhood of the
weak signal from the singl®aphnia The detecting unit  swarm delineate optimal tracking and capture strategies for
switches stochastically between two states, with trean|t|0|J°|u\,em|e feeding. Our predictions appear to be experimen-

rates governed by both the signal amplitland the noise 5y testable. Finally, a summary and an outlook are given in
intensity D experienced at the detector site. Recently, theggc. v,

phenomenon of SR was linked to the effect of noise-induced
phase synchronizatiofil4]: for optimal noise the average
duration .of locking Qplspdes can increase enormo[[_&ﬁ}. Il. DAPHNIA SWARMS
Stochastic synchronization has already been experimentally
demonstrated in the paddlefish electroreceptor system where Daphniaare the most commonly studied freshwater zoo-
for weak stimuli it is a possible encoding schefd€]. Ap-  plankton, in large part because they are widely distributed,
plied to our case this means we can explore the beneficialbundant, and easily sampled and cultui2dphniainhabit
role of swarm noise by analyzing the average number ofhe pelagic(open-water zones of lakes and slow-moving
periods the fish can receive before a phase slip disturbs thévers and are very important prey for fish. They are cyclic
signal detection. parthenogens, that is they spend the greater part of the grow-
We emphasize that the averaging implied above need ndng season reproducing clonally. No actual mating needs to
be temporal, but instead almost certainly is an ensemble awccur for reproduction, and consequently individuals do not
erage over a population of thousands of receptor cells. In thiseed to find each other. Thus there is no reproductive advan-
case the synchronization of the array of receptors over one dage(in terms of finding mateso swarming.Daphniaswim
a few cycles of the signal amounts to an encoding based owith a hopping motion induced by a powerful downbeat of
timing precision. A form of SR based on a measure of spikehe modified second antenna followed by a brief period of
timing precision has recently been demonstrated for a parakinking. They can modify their swimming pattetturning
lel array of Hodgkin—Huxley-type receptors with summedfrequency and swim speed depending on several factors in-
outputs[17], a type of connectivity thought to be common in cluding food densityf19], predatord20], and light intensity
sensory biology. The array can achieve a high degree d21].
synchronized timing precision upon application of a single, Several studies have noted the tendenciaphniaindi-
subthreshold stimulus pul$&7]. Synchronization of the ar- viduals to swarm or display a clumped spatial distribution
ray response during only one or even a fraction of a singl¢22,23. These swarms consist of very high-density aggrega-
cycle of the applied stimulus is therefore possible via thistions, with 1000—9000 individuals per liter observed. Indi-
mechanism. However, for an ergodic system, as assumedduals may use photons emitted by other individuals to rec-
here, temporal averaging is equivalent. Moreover, if one reognize each other and determine interneighbor distances in
ceptor cell can synchronize with the external field, it hasthe swarmg24]. Several hypotheses have been proposed to
been shown that under the same conditions all others cagxplain swarming behavior iDaphnia Swarming for mat-
also[18]. It is therefore sufficient to study a temporal aver-ing purpose$22] and the avoidance of predation are the two
age over many signal cycles applied to a single receptomajor explanation§23,25. Because swarms often consist of
Owing to the dependence éf andD on the geometry, i.e., parthenogenetic individuals, the mating hypothesis can be
the positions of swarnfcentey, singleDaphnig and the ros- excluded in most cases. Other swarm characteristics lend
trum (detectoy, we compute the spatial distribution of the credence to the predator-avoidance hypothesis. Swarming
average duration of locking episod€B,.) and normalize it more often occurs during daylight hours than at night

LssEanina daphnia swarm

rostrum
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FIG. 3. Electric oscillations from a tetherddaphnia can be
i ; correlated with rhythmic beating of the feeding legs or antennae.
3 \ Carapace _ _ _ o
Antenna Legs cm or more is approximately a dipole, and in this work we
shall assume it to be a dipole.
1 mm The power spectrum of the experimenBaphniasignal
is shown in Fig. 4
FIG. 2. The singleDaphnia There are two main frequency components, a broader one

around 5 Hz, which results from feeding motions of the ap-
[23.26. When in a swarm, the swimming speed of all indi- pendages, and a narrower one at about 7 Hz resulting from

duals i kabl i thouah th d hob i swimming motions. Note that both these oscillatory compo-
viduals Is remarkaply uniform, though they move and nNop Ny a g are superimposed on a broad noise background. For the
random directions, and much slower than when they are sol

o Sake of simplicity we shall omit the swimming frequency

tary (e_.g., speed of 2 mm/s within swarms versus 7 mm/s a38nd concentrate on the 5 Hz feeding frequency.

solitaries .[20]' o . _ In Fig. 5A) we show the photograph of a swarm in an
There is also a tendency of individuals to circle 'nwardsaquarium together with the experimental setefectrodes,

and downwards in the swarnjg7]. Probably the stronge§t isolation, etc). Figures %B)—(D) show the time course of the

Toise voltage(B) measured at the recording electro@d),

Th hemical d hich be f together with its related power spectry@), and amplitude
ese chemical compounds, which act as cues, can be oy, rion (D). We note that the amplitude distribution is

fish, inver_tebrate predators or even from the crushed_ bodiqﬁe” approximated by a Gaussian as shown by the solid
of Daphmathemselves. The tendency of a populatlon OfCurve. The power spectrum is approximately a Lorentzian
Daphniato rgspond_to predator exuded chemicals may deFelated to Ornstein-Uhlenbeck noig&0] which itself is gen-
pend on their previous exposure to such a predg2ét. erated from

These results suggest that for most swarms formed during

the growing season, the most likely explanation is the avoid- 1 D

; : . . ; - &+ )=\ ——T'(), (1)

like planktivorous fish or by invertebrate likehaoborus sp. 71 T1T2 T172

[19,20,23. The tendency to form groups benefits a single

individual, because the movement of many identical indi-whereI is Gaussian white nois@Viener processi.e.,
viduals can distract predators and decrease their attack rates.

from studies of trace chemicals exuded by preddt2@s28|.

ance of predation by visual predatdigenerally vertebrates §+< L + i
72

In addition, for each individual, there is a dilution effect (T'(t))=0 and (T'(HT(t"))=248(t—t"), (2
afforded by being within a group when faced with a predator.
Swarming inDaphniais likely a permanent behavioral strat- 0.0 ;

egy in systems where predators are abun{20i

Ill. SIGNAL AND NOISE CHARACTERISTICS

The signal from a singlddaphnia and noise from the
swarm can be measured. A singBaphnia is shown in
Fig. 2.

Figure 3 shows the time course of the potential measured
at a distance of 1.2 mm behind the abdomen.

The potential consists of both ac and dc components, but &
here we concentrate on the ac, or oscillatory, component. **
Recent experiments have shown that the behavioral re-
sponses, scored as strikes, exhibit a bandpass characterist 2%, 10 20 30 40 50 60 70 80 90 10.0
with a maximum response between 5 and 15 Hz. Response: f (Hz)
were less frequent at high€20, 40, and 50 Hzand lower
(0.1, 0.5, and 1 Hrtest frequencies, with a steep drop-off  FIG. 4. The power spectrum of the experimental sirggphnia
below 5 Hz[29]. The shape of the potential at distances of 1signal.
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Electrical noise

ny
S

- B
= FIG. 5. A: A photograph of a
0 Daphniaswarm withref denoting
g’ the reference andl the recording
20 ‘ ) ; . electrode, respectively. The arrow
0 200 400 600 800 1000 points to the 1 mm diameter silver
time (msec) ball andagar is the agarusisola-
tion preventing direct contact of
Daphnia with the recording elec-
Gaussian distribution of noise trode. B: A fragment of the volt-
o0.08 age record. The time series was
%? 0 c 2 D filtered using a high-pass filter at
~ 4 0.5 Hz. C: Power spectrum of the
£ legs g‘me recorded swarm voltage. D: The
£ B voltage probability distribution
8_'20 = 0.04 extracted from the recorded
@ = swarm signal exhibits a Gaussian
g g oozt shape.
S
8. -40 o [0}
o 5 10 15 20 10 0 10 20
frequency (Hz) V V)

and D controls the intensity of fluctuations. The left-hand alternative approach which employs the concept of phase
side of Eq.(1) establishes a second order low-pass filter. Thdocking.
constantst; and 7, have the meaning of two correlation Since we are interested in a noise-induced phenomenon
times, as can be read from the stationary correlation functiowe have to treat the stochastic generalization of classic phase
(assumingr; > 75) locking [33]. The introduction of noise requires one to recon-
sider the phase locked situation, originally meaning that the
| 7] | 7] difference between an input and an output signal remains
T1EXP s 2 ex;{ )| (3) constant, in terms of finite locking periods which are inter-
rupted and separated by short phase slips. When the average

C_D
N

The analytic expression for the power spectrum reads ~ length of locking episodes assumes values which are large
compared to the signal period it is reasonable to speak about

2D effective phase synchronization.
Ser(w)= 4 These statements are made precise by derivation of a dy-

1= PRI ——— L
[1=mm0 P nt e namic equation for the phase differenge: ¢y — ¢, which

In the context of swarm noise the parametgrsind 7, char- IS known as the Adler equatidi34]

acterize the fictitious dynamics of a stochastic electric source
which emits the swarm signal. The casg<r; corresponds 0
to the common overdamped limit of the Ornstein—Uhlenbeck —~
process. Later, we need threshold crossing rates for the sung
of a sinusoidal signah sin(t) and colored Gaussian noise g
&(t). For these rates to remain finite the spectral density has3
to decay with at least the fourth power of the frequef&4j, '
hence, bothr; and 7, should be nonvanishing. 2
In Fig. 6 we fitted Eq(4) to the measured spectrurig. g

S

o

o

-20 | ey,

50)].

The best fit of Eq(4) to the experimental data yields
=0.13 s and7,=0.017 s which means that an oscillator
generating such a spectrum is far from being overdamped;
the swarm signal is closer to so-called harmonic np&&. -40 0

10 15 20
frequency (Hz)

W

IV. SIGNAL DETECTION AND PHASE LOCKING
FIG. 6. The experimental power spectrum from Fig. §dGtted

The classical evaluation of SR with periodic signals pro-line) and Eq.(4) with constantsr;=0.13 s andr,=0.017 s(solid
ceeds by computing the spectral power amplificatiSRA) line). Note that due to the normalization of the experimental spec-
or the signal-to-noise ratiBGNR) [10]. Here, we will use an trum the noise intensit is still undetermined.
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—A(p+Assin(p The limiting cases for the drift and the diffusion dominated

regimes read foD< |( o)|:
(e Q m [ D +1( D ): (8)
Niock) = 52— — S — e

¢ 2w o) mle) 2\ (o)
for D> 7| (o)|:
Qin 7 1 7T<‘P> ’
FIG. 7. The stochastic dynamics of the phase differepazn <n|ock>:% izl T 9

be understood as the motion of a fictitious Brownian particle in an

undulated and tilted potential. The phenomenon of noise-enhanced signal detection

. shows up by a dramatic increase of the quan(ity): un-
e=A—Ag cosp+é&. (5)  der conditions of sufficiently large, albeit subthreshold signal
amplitude and optimal noise, the paddlefish detects many

. . g[eriodic beats of the singlBaphnia In the context of our
In the framework of stochastic processes one can interpr , . . ! !
geometric setupcf. Fig. 1] the efficiency of detection will

this dynamics as the motion of a fictitious Brownian particleva from place to place. Hence we will plot the spatial
which moves in a corrugated and inclined potential land- ry P P ’ P P

scapdcf. Fig. 7] distribution of the quantityn,,.) to substantiate our central
Here A is the so-called frequency mismatch, i.e., the dif—theSIS'

ference between the natural oscillator frequefigyand the

input frequency(),,. A is the synchronization bandwidth. V. DICHOTOMIC SIGNAL DESCRIPTION

The latter term becomes clear when realizing that a locking . : .
episode means that the particle wiggles around inside one of 1© derive how( ¢) andD depend orA andD we specify

the wells while a noise-induced jump to a neighboring well2 dichotamic description of both the outpyt) and input

: x(t) signals. The two states between which the signals
corresponds to a phase slip. As can be seen fron{3tqthe /
potential possesses wells only [if|<A.: this necessary switch back and forth are chosenad and+1 and can be

condition for phase synchronization says that the systerﬁonneCtEd to the instantaneous phaggs and ¢, via
generating the output can synchronize only with input sig-

nals whose detuning is less thag. Y(O) =extli doult) ]= expl ikou(t) 7], (10
For the case that andAg are independent from the noise _ . B .
intensity, fluctuationsé(t) can only deteriorate the mecha- X(t) =exli ¢in(t) ] = exd ikiy(t) 7]. (13)

nism of phase synchronization. The awesome constructivE (1) andk,(t) are point processes describing the related
role fluctuations play in SR has its counterpart in the phe-s\‘;\‘l‘itChin e{?ents an% simpl accumulate thg number of
nomenon of noise-induced phase coherei®8: now both 9 Ply

. . . switches which occurred up to timesince initialization.
A andAg are not only functions of the signal amplitudéut : : , .
N . Hence by construction the phases are discontinuously in-
also of the noise intensiti.

The average duration of locking episodes can be comereasing functions of time. Following from its definition, the

puted from an ansatz for the mean square displacement phase d|fferencaa= bour~ bin IS also _restrlgted to multiples .
of 7 but increases or decreases discontinuously depending

on whether the output or the input is jumping.
(02 ={ @YX T 10002+ 2D(T gy = 2. (6) The stochastic dynamics of the phase differengg)
=k(t) 7 is specified by fixing the transition rates between
the four states shown in Fig. 8.
Switches of the input occur regularly at all integer halves
of the input signal, i.e., the periodic process is not stationary
but only cyclostationary

Average growth ofp? is decomposed in a drift and a diffu-
sive component. In the next section we will briefly review
how the average frequen«&b) and the phase diffusion co-
efficient D, not to be mixed with the noise intensily, can

be derived analytically in the framework of a fully dichoto- A oc Nt &
mic signal description. Then it will also become clear why Qt,N=m >, 5<t— , (12)
we define a phase slip by the distance n=—o Q

From Eq.(6) we can readily write down an expression for ) o ) ) ]

average locking episode tics we have to perform a subsequent averaging with respect
to ¥
<Tlock> O, D 7T<<P> ~ 27 A do
(Nioe) = T. 27 (o \ 1+ — )~ @ (Q)y= fo Q(t,9)5—=0. (13
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-1,+1 a +1,+1 20
o = g )
a
A 2 A o
o]
L 4
©
T
3
A A A A N
Q| Q Q| Q ®
£
T
]
c
v v
e > ©
-1,-1 a, +1,-1
FIG. 8. The twice dichotomic description defines the 2-state FIG. 9. In contrast to the standard Kramers' ratag,

system: horizontal transitions describe a switch of the output while— 5 (5 7, 7,)exp(FA/26?) (dashed the expressions used in Egs.

vertical ones correspond to switches of the input. The sy_n_chronou@l@ and (17) (solid lineg are not monotonously diverging with
states, i.e.4+1,+1 and —_1,—1, are favored by the conditioa; increasing signal amplitude; all curves for-1.
<a, (for further explanations see text

The ratesa; anda,, governing switchings of the output, are - 1 eXp( 3 i_) exp( N K(l_—K)
modeled such that they favor the synchronous states, ( 2 2m\T7 202 o2
+1 and—1,—1) above the asynchronous onesi,—1 and
;;’;(FA{)['))_TO achieve this we have to obeg;(A,D) The common prefac':tor of.both rata§(;,il,7-2) is inde.pen—
The time modulated threshold crossing ratgét) for the dent of the normalized signal amplitude The amplitude

sum of a sinusoidal signa sin(Qt) and colored Gaussian dependence in the exponent is nonstandard since it involves
noise[cf. Eq. (1)] were computed ifi36] a square, diminishing both rates for large amplitude signals.

Hence the maximum discrepancy betwesenand a, does

. (17

1 [1—Ksin(Qt)]2 not occur forA=1 as is the case for Kramers-like rafes.
Ie(t)= ——=exp — — = Fig. 9].
2w\ 7Ty 20 With the rates given by Eq$12) and (16) and (17) we
- can write down the master equation governing the probabi-
A 1 2= listic evolution of the phase difference
X| exp — — |+ zAe\/ = coqgQt)
207 2 a?
IP(t) 4
— g (Per1= P+ G- 1Pi-1— 9P, (18
Aecoq()t)
xerfe| — ——— (14
20° where we have denotdel,= prob(¢=Kk) andg,=a; for k
even andg,=a, for k odd. From there it is straightforward
with dimensionless scaled parameters to calculate
A=l P=, O = @%hm, (19 - ™ m
b Tty VT2 (p)=—0+ 5 (ar1tay) — 5 (8- ar)(cose). (19

whereD, 7, andr, are as in Eq(1) andb denotes the e that Eq(19) is the analog to the averaged Adler equa-
threshold. Note that subthreshold signals correspond to thg, (5) whe%.(idgntifying g g d

range G<A<1.

Since our theoretical approach used both dichotomic out- . -
put and input, the latter justified by, say, some preprocessing A= S(at a)—Q and A5=5(az—a1). (20)
of the continuous sinusoidal signal, we can identify the rates

a; anda, with
1 ) p( A(1+A)
eX —

1
=—-7-D2:0X _——
27N\ TT [{ 207 a?

Note also that viaa; anda, now bothA and A are noise
dependent. The quantitjcose) turns out to be the input—
. (16) output correlatof37]. Its asymptotic value can be computed

a S
yielding

031910-6



BEHAVIORAL STOCHASTIC RESONANCE: HOWA. .. PHYSICAL REVIEW B3 031910

lim (cose)=(o*)= B (1) 8|
e 2(Q/m)+(ar+ay)
hence it is also completely determined by the rates. = 6
The phase diffusion coefficieri? is defined by the rela- =%
tion v al
+
1 = _
D=5al(¢%) ~(¢)?]. @ g e A= 05
In principle, its computation from the master equati@8) is or

straightforward[38]; some subtle difficulties for strictly pe-
riodic input signals have been discussed 18]. The result > , . ,

reads -2 2 4
log,,[1+A/Q]

71_2

2

a;ta,
2

(0%)

Q
H == (aman

<0,*>2_ aZ;a1<o_*>3

. (23

( Q
~|l2-~(atay)

In Fig. 10 (top and bottom we present double logarithmic
plots of the average output frequen@y+ () (normalized to
Q) and of the phase diffusion coefficieft (normalized to
212), both as functions of the “natural” detector frequency
Qy=0Q+A (normalized toQ)) for various normalized signal

amplitudesA=0,0.1 ...,0.5.

log, ,[1+2D/]

VI. GEOMETRIC DEPENDENCE OF A AND D 6 n , '

2 4
Inserting the expressions f¢p) and D into Eq.(7), and log,,[1+A/2]

by virtue of Egs.(16) and (17) for the ratesa; anda,, we FIG. 10. The frequency and phase locking regions appear in
can computényee), 1.€., the average number of periods the these plots as plateaus around zero of the ordinate. The width of the
fish can detect before a phase slip occurs, for gReA,o?.  plateau grows with increasing amplitude=0,0.1, . ..,0.5. The
What remains is to expregsescaled signal amplitude and tips in the upper right correspond to— where maximum flip-

(rescaled r)oise intensity as functions of the distanceand  ping rate of the detector, given R m\7,7,] %, is experienced.
R, respectivelycf. Fig. 1.

As said before, the electric field of a singiaphniais 3n(N-py) —p
assumed to be a dipole field. As is known from classicalﬁ(r*)ww (24)
electrodynamics, one has to distinguish between different re- r
gimes:
Pa - > . -
near-field limit d<r<\, ~ r—3(n2 cos® —a cosd sin® —b sin® cosO),
(25

intermediate region d<<r ~N\, . L
where pq is the dipole moment of th®aphniaanda, b,
far-field limit  d<\<r, andn constitute a right-handed orthonormal basis. With
playing the role of thez axis, theDaphnia dipole moment

whered, \, andr denote the extension of the dipole, the €@n be represented in spherical coordinates, i,
wavelength of the radiated ac field, and the distance betweeti (Pa.®,0), cf. Fig. 11. .

the dipole and the observation point, respectively. In our case Considering only the field component alongve find the
d, the Daphniasize, is of the order of a few millimeters and following result for the signal amplitude

the wavelength\ (for an oscillation of 5—-10 Hefar beyond 0

the scale of a kilometer, hence, the near-field limit applies. In _Fd

this limit the electric dipole field reads A r3 cog0) (26)
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. f xp(x)d3x=0. (30)
! In accordance with the above near-field linfi®4) the total
| = 4 electric field at the detector sifge., at the poimﬁ) reads
B, f 9 NE)” & [cf. Fig. 11]
¥ L
N . 3N(X)(N(X)- p(x,t))—p(x,t
E(R,t)~f M )ap(as) P( )p(X)d3X+C.C.
\\ —B> ; |R_X| (31)
AN Ry
n T with
Y ,/,:”‘ R S S
PRV - - R—x
“““ N(X)=—=—= (32
sensory detector |R—X|
FIG. 11. The geometrical configuration illustrating our notation 5
used in the derivation&see text
P(X,t) = paL (x) 'Lt v0Il, (33

which incorporates two important features: The dropping of

the amplitude with respect to the distance accordingrto®a . - - . .
law, and the fact that the amplitude also depends on th he unit vector (x) accounts for the local orientation of the
' netdipole moment ofDaphnia in a little cube centered

Daphniaorientation: Ford=0 or 6= 7 (emitting in the di- > ) _ RN i
aroundx. Assuming the local orientationgx), frequencies

rection parallel tof) the fish detects théaphnia best - N ]
whereas foro= /2 (emitting in the direction perpendicular @(X) and phases/(x) to be independent random numbers
corresponds to the assumption of incoherent activity of

to r) the Daphniais somewhat “invisible.” Daphniain th
In what follows we will only consider the best case, i.e., apnniain the swarm. L .
; Then, the correlation function is proportional to
we write
p(X)  p(x")
R [R—x'[°

A=Clr£3, 27 <§(ﬁ,t>-é*(ﬁ,t’)>~p§f f d3x dBx’
where the proportionality consta@; is achieved by a fit to X(EBNC)(N(X) - L(x) = L(x)]

the measured pair&2.5 cm,A=1 uV) yielding -[3N(§’)(N(§’)'E()Z’))—E()Z’)])
125 GO NPT RITCOI

Ci=—puVcmd. 28
1= g M (28 a

To derive how the noise intensify depends on the ge- Due to the random phase assumption the related term in
ometry we employ a continuum approach to model thebrackets will only survive in casé =0, however, this
Daphniaswarm. In the reference frame of the geometricalimeans only foix=x’. Hence
center of theDaphnia cloud [cf. Fig. 11] we describe the
distribution of the population by the densipgx). It is nor- (e~ 1) —40D] 5 (x ")y S(X—x"). (35)

malized to the total numbeX of Daphnia
The first exponential in brackets in E@4) will generate the

basic structure of the Ornstein-Uhlenb&€XJ) spectrunicf.

J p(X)d3x=N. (29 Eq.(4)]

Since we restrict ourselves to spherical distributions, i.e., i[o()(t—t")] 1 36

" L . . <e >_>[1_ 2]2+[ + ]2 2 ( )
p(X)=p(x), the center of mass coincides with the geometri- T1T2W Tt T2l W
cal center _

from which we conclude that
The transition fromé to —m simply corresponds to a signal DNpgf %(3([\](;) L(X)%+ I:Z()Z))d3x (37)
—X

which is phase shifted by
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o P - 3
pdf —|F§—>Z|6<3 cogy(x)+1)dx, (39)

where y(x) is the angle between the unit vectdi$x) and

L(x) [cf. Fig. 11]. Assuming this local angle to be equidis-
tributed over the rangg0,27] and performing the average
yields a factor 5/2.

The remaining integral

p(X)
D~ pgf md?’x (39)

can be evaluated in spherical coordinates and, assuming
Daphniato be equidistributed inside the swarm, i.p(x)

=N[37(A/2)%]7%, yields FIG. 12. TheDaphniaswarm with a diameter of 100 cifbig
white spherg and the singleDaphniacentered in the small white
N 1 spot on a black background indicating the nondetectable region.
D:C2§6 A2\ 3 A2\ 3" (40) The gray rectangle contains the region zoomed in Fig. 13.
%) ]

[27\1175] Y Hz. With 7;=0.13 s andr,=0.017 s we
whereC, is a related proportionality constant. We note thatthus find thata;,;<3.4 Hz which means the detecting unit
for R— A/2 (from abovg a third order pole R—A/2)"2in  switches much too slowly. However, since detecting sites are
the intensity shows up due to the fact that the detector colspread across the rostrum in abundance we may assume that
lects signal power fronDaphniain the immediate vicinity of ~ the effective switching rate is much higher. Hence we scale
the projected contact point; of course, when approaching thep the prefactor of both rates until the expected effect be-
swarm too close, i.e.R— A/2)~O(d), the dipole approxi- comes visible.
mation of the electric field loses significance.
In the other extreme) /2<R, a rapid decrease according
to anR~® law indicates that the extension of tf@phnia
cloud becomes unimportant. Due to the used near-field limit We visualize the results in the following way: We place
we also have to obeRR<\; however, this upper bound is the singleDaphniain the origin of our coordinate system
practically irrelevant because at and beyond this point thend fix the center of th®aphniacloud along thex axis at
intensity is negligible anyway. the position (,0,0); a suitable translation and three rotations
Again, the proportionality constar@, occurring in Eq.  will always render this setup possible. Then each triple
(40) can be fixed by comparison with experimental ddfh ~ (x,y,z) determines a position of the predator relative to the
Thus forD=1 (uV)? Hz !, A/2=2 cm, R=3 cm, and prey, i.e.r =X?>+y?+z? and the distance between the cen-

VII. RESULTS

N =200 we find ter of the Daphnia swarm and the detectolR is
J(x—L)2+yZ+ 22
C2=E(,uV)2Hz‘1cm6 (41) For the swarm diameter we assume a valde
8 .

=100 cm; together with the density of 27000—9000 per liter
] . ) mentioned in Sec. Il we infer a number of up
Being furnished with formulag28) and (41) we have to  —5 000 000 Daphnia clumping in the swarm. With these

determineA ando? according to Eq(15). To this end we fix numbers at hand we can compute the valng,) for each
the threshold such that the valuA=1 is reached when the position of the predator relative to the static prey and the
distance to theDaphniais 1 cm which yields the valué static swarm.

=125/8 wV. This means the suprathreshold region coin- To give the reader a realistic impression of the geometric
cides with the region where the dipole approximatiah ( dimensions we depict the swarthig white bal) and the

<r) loses significance. In this way we find(r) and single Daphnia (in the center of the little white sppbn a

— ) . ) black background, indicating the nondetectable region, in
o(R,A,N) which we can plug into the expression for the Fig. 12 grou ndicating g !
rates(16) and (17). These are used to compute asymptotic The gray rectangle contains the region relevant for SR.

(¢) andD which themselves are inserted into K@), even- e zoomed this region and display our final result in the
tually yielding (i) (1, R, A, N). sequence of images in Fig. 13.

Before evaluating our analytic formulas numerically we  The sequence shows the spatial distribution of the quan-
have to mention a problem that arises from the fitted valuegty (N With gray scale coding valugsf. the gray value
for 7, and, [cf. Sec. Ill]. As is obvious from Eqs(16) and  pan). The singleDaphniais indicated by the little black spot
(17) the maximal rate(occurring for o—«) is given by inside the white sphere. The latter describes the region of
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VIlIl. SUMMARY AND OUTLOOK

We have resumed the idea, first expressed by Russell
et al.[1], that a nearby swarm d@aphniaprovides a natural
source of electric noise essential for the mechanism of SR.
We modeled the swarm noise as OU noise generated by in-
coherentDaphniaactivity. The rapid geometric decay of the
noise intensityD (R) and of the dipole signal amplitud&(r)
(near-field limiy restricts the spatial region of SR to a narrow
band around the swarm boundary.

The quantity we used to measure noise-induced widening
of the detection area was the mean duration of locking epi-
sodeg 15] normalized to the period 2/Q) of the input sig-
nal. The description of1:1) noise-induced phase locking is
based on the phase differengebetween a dichotomic de-
tector (predatoy and a two-state, i.e., preprocessed harmonic
input signal(prey). We employed analytic expressions for

the average frequencyp) and the phase diffusion coeffi-
cientD derived in[14]. These are based on two rassand
a, which, in this work, we adopted frorf36] and which
were derived for a threshold system driven by OU noise.
Most of the free model parameters were fitted to existing
experimental data. The maximum flipping rate of the two-
state detector was scaled up to render a pronounced effect;
this tuning may be justified by accounting for cooperative
effects of many detecting sites spread across the rostrum in
FIG. 13. The sequence of images shows the spatial distributiombundance. Numeric evaluation of our analytic formulas sup-
of the quantitynoc) with values coded by gray valuésf. the gray  ports the notion of noise-enhanced detectability quantita-
value baJ. The white region around the singlphnia(black cen-  tively: At a certain distance the swarm builds a “firewall”
tral spoj codes the suprathreshold signal region which also violategyhich widens the detection area around a singkphnia
the dipole approximation; in this region the predator can detect thejuring its “passage.”
prey even in the absence of swarm noise. At intermediate distances Synchronization of noisy electrosensitive cells in the ros-
(=5 cm) to the swarm the singlBaphniahas to dive through a trum of a paddlefish with an externally applied electric signal
“firewall” established by the optimal noise condition. As expected, was shown in an experimefit6]. For a 5 Hzstimulus a 1:17
the geometry of contour lines reflects the compromise betweefpcking mode was observed. Extension of our analysis be-
spheres around the singlaphniaand contour lines of noise inten- yond the assumed 1:1 locking mode requires further analyti-
sity spreading concentrically around the swarm boundary. cal work. An improved understanding of cooperative infor-
mation processing done by many detecting sites in the
suprathreshold signals, i.e., places were the fish can detestrum and a better estimation of time constants and param-
the Daphniaeven in the absence of swarm noise. Moreovergters would be desirable for planning a behavioral experi-
within the white circle the dipole approximation loses sig- ment designed to test the predicted effect.
nificance. The depicted rectangle extends from 10 cm left of

the swarm boundary up to 2 cm inside and over 6 cm in the ACKNOWLEDGMENTS
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