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Behavioral stochastic resonance: How a noisy army betrays its outpost
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Juvenile paddlefish prey upon single zooplankton by detecting a weak electric signature resulting from its
feeding and swimming motions. Moreover, it has recently been shown that paddlefish make use of stochastic
resonance near the threshold for prey detection: a process termed behavioral stochastic resonance. But this
process depends upon an external source of electric noise. A swarm of plankton, for example,Daphnia, can
provide this noise. Assuming that juvenile paddlefish attack singleDaphniaas outliers in the vicinity of the
swarm, making use of noise from the swarm, we calculate the spatial distribution of the average phase locking
period for the subthreshold signals acting at the paddlefish rostrum. Numeric evaluation of analytic formulas
supports the notion of a noise-induced widening of the capture area quantitatively.
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I. INTRODUCTION

We have recently shown that juvenile paddlefish,Polyo-
don Spathula, make use of stochastic resonance~SR! in the
detection and capture of planktonic prey at the threshold
their perception@1#. Prey are detected, tracked, and loca
exclusively by means of an elaborate array of electrorec
tors spread over the animal’s rostrum, or paddle shaped n
like appendage.Polyodon Spathulais a primitive creature
whose fossil record extends into the Cretaceous period~65
million years ago! @2#. This, together with some recent phys
ological evidence@3#, suggests that behavioral SR is a
evolved survival strategy. The paddlefish, which is fou
only in the river basins of the Midwestern United States a
in the Yangtze River in China, feeds exclusively on zo
plankton. Moreover, paddlefish are largely bottom feed
where the light is poor and where, in turbulent, silt-lad
waters, vision is limited. In order to survive in this enviro
ment, they have evolved the aforementioned electrosen
system. Juvenile paddlefish~less than one year old! locate,
track, and feed on single plankton@4#, whereas older fish
after having developed gill rakers, filter feed on swarms.

The Daphnia, a plankton of 1 to 2 mm in length com
monly found in North American fresh water, is a favori
food of the paddlefish.Daphnia emit weak dipole-shaped
electric signals with both oscillatory~4–8 Hz! and dc com-
ponents. Though the dc component is much larger, we h
study only detection of the ac component by means of
chastic synchronization. Due to the dipole-like shape of
field, the intensity of aDaphniasignal at the fish’s rostrum is
expected to drop off rapidly with distance. Indeed, it h
recently been shown, using the dipole characteristic 1r 3

drop-off, that the capture probability with distance exhibit
by the fish mimics the Fisher information on its rostrum fro
a singleDaphnia @5#. Daphnia that appear at a larger dis
tance from the fish’s rostrum are less likely to be detec
1063-651X/2001/63~3!/031910~11!/$15.00 63 0319
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and/or captured. But weak signals from distant singleDaph-
nia can be enhanced, and consequently the probability
they are captured, by an external noise source@1#. In Ref.
@1#, we applied a uniform electric noise field parallel to th
rostrum in order to demonstrate behavioral SR. Here we
vestigate the possibility, already suggested in Ref.@1#, that a
swarm ofDaphnia can provide the necessary source of e
ternal noise in the wild. Thus the noise from an army
Daphniacan help to reveal the locations of its outposts.

SR has its roots in notions about global climate dynam
put forth in the early 1980s@6#. A large interest in SR has
arisen, especially since its introduction into experimen
sensory biology@7# and its observation in membrane io
channels@8#. It has been the subject of a report@9# and sev-
eral reviews@10#. In the simplest view, called threshold, o
nondynamical SR@11#, only three ingredients are necessa
a threshold, a subthreshold signal, and noise. Origina
however, SR was described as noise-induced switching
the state point in a bistable potential@12#, and this is the view
we take here. Indeed, in the original biological application
SR, the information contained in the barrier crossings of
state point in a weakly, periodically modulated bistable p
tential provided the first quantitative explanation of the
mous phase locking phenomenon widely observed in sen
biology @13#. Example data from the auditory nerve fibers
the squirrel monkey and from the visual cortex of the c
were presented in support of that explanation.

We consider an outlierDaphnia in the vicinity of the
swarm as the source of a weak periodic signal. The sig
from this singleDaphnia is detected at the rostrum of
paddlefish. The swarm is assumed to be spherical with di
eterL5100 cm. In the reference frames of the singleDaph-

nia and the center of the swarm, the two vectorsr¢ and R¢
represent the distances to the paddlefish rostrum, res
tively. For a schematic setup of this scenario see Fig. 1.

At the rostrum, noise from the swarm is added to t
©2001 The American Physical Society10-1
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weak signal from the singleDaphnia. The detecting unit
switches stochastically between two states, with transi
rates governed by both the signal amplitudeA and the noise
intensity D experienced at the detector site. Recently,
phenomenon of SR was linked to the effect of noise-indu
phase synchronization@14#: for optimal noise the averag
duration of locking episodes can increase enormously@15#.
Stochastic synchronization has already been experimen
demonstrated in the paddlefish electroreceptor system w
for weak stimuli it is a possible encoding scheme@16#. Ap-
plied to our case this means we can explore the benefi
role of swarm noise by analyzing the average number
periods the fish can receive before a phase slip disturbs
signal detection.

We emphasize that the averaging implied above need
be temporal, but instead almost certainly is an ensemble
erage over a population of thousands of receptor cells. In
case the synchronization of the array of receptors over on
a few cycles of the signal amounts to an encoding based
timing precision. A form of SR based on a measure of sp
timing precision has recently been demonstrated for a pa
lel array of Hodgkin–Huxley-type receptors with summ
outputs@17#, a type of connectivity thought to be common
sensory biology. The array can achieve a high degree
synchronized timing precision upon application of a sing
subthreshold stimulus pulse@17#. Synchronization of the ar
ray response during only one or even a fraction of a sin
cycle of the applied stimulus is therefore possible via t
mechanism. However, for an ergodic system, as assu
here, temporal averaging is equivalent. Moreover, if one
ceptor cell can synchronize with the external field, it h
been shown that under the same conditions all others
also @18#. It is therefore sufficient to study a temporal ave
age over many signal cycles applied to a single recep
Owing to the dependence ofA andD on the geometry, i.e.
the positions of swarm~center!, singleDaphnia, and the ros-
trum ~detector!, we compute the spatial distribution of th
average duration of locking episodes^Tlock& and normalize it

FIG. 1. The setup of the predator-prey-noise system. TheDaph-
nia swarm which is assumed to be spherical provides the n
background. The geometry is specified by the two distance vec

r¢ andR¢ , the extension of a singleDaphnia d, and the diameter of
theDaphniaswarmL. The singleDaphniadipole is indicated by a
little arrow.
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to the signal period, thus yieldinĝnlock&5V^Tlock&/2p. We
emphasize that our synchronization approach is nonlinea
nature. The nonlinearity of the synchronization theo
@14,15# is necessary in order to account for the depende
of the output on signal amplitude or distance to theDaphnia.

In Sec. II we briefly describe the swarming behavior
Daphniapopulations and outline some current ideas rega
ing their interactions with one another. In Sec. III we displ
the characteristics of the signal from a singleDaphnia and
the noise from aDaphniaswarm. We then outline in Sec. IV
the theory of effective phase locking and show how^nlock& is
calculated from knowledge of the average frequency^ẇ& and
effective diffusion coefficientD of a phase differencew. In a
twice dichotomic signal description̂ẇ& and D can be ex-
pressed via two ratesa1 anda2 ~Sec. V! which, in turn, are
determined by the signal amplitudeA and the noise intensity
D. The dependence ofA and D on geometrical distances i
derived in Sec. VI. In Sec. VII we apply these calculations
the detection problem faced by a juvenile paddlefish seek
to capture a singleDaphnia in the vicinity of the swarm.
Contours of constant̂ nlock& in the neighborhood of the
swarm delineate optimal tracking and capture strategies
juvenile feeding. Our predictions appear to be experim
tally testable. Finally, a summary and an outlook are given
Sec. VIII.

II. DAPHNIA SWARMS

Daphniaare the most commonly studied freshwater zo
plankton, in large part because they are widely distribut
abundant, and easily sampled and cultured.Daphnia inhabit
the pelagic~open-water! zones of lakes and slow-movin
rivers and are very important prey for fish. They are cyc
parthenogens, that is they spend the greater part of the g
ing season reproducing clonally. No actual mating need
occur for reproduction, and consequently individuals do
need to find each other. Thus there is no reproductive adv
tage~in terms of finding mates! to swarming.Daphniaswim
with a hopping motion induced by a powerful downbeat
the modified second antenna followed by a brief period
sinking. They can modify their swimming pattern~turning
frequency! and swim speed depending on several factors
cluding food density@19#, predators@20#, and light intensity
@21#.

Several studies have noted the tendency ofDaphnia indi-
viduals to swarm or display a clumped spatial distributi
@22,23#. These swarms consist of very high-density aggre
tions, with 1000–9000 individuals per liter observed. Ind
viduals may use photons emitted by other individuals to r
ognize each other and determine interneighbor distance
the swarms@24#. Several hypotheses have been proposed
explain swarming behavior inDaphnia. Swarming for mat-
ing purposes@22# and the avoidance of predation are the tw
major explanations@23,25#. Because swarms often consist
parthenogenetic individuals, the mating hypothesis can
excluded in most cases. Other swarm characteristics
credence to the predator-avoidance hypothesis. Swarm
more often occurs during daylight hours than at nig
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BEHAVIORAL STOCHASTIC RESONANCE: HOW A . . . PHYSICAL REVIEW E63 031910
@23,26#. When in a swarm, the swimming speed of all ind
viduals is remarkably uniform, though they move and hop
random directions, and much slower than when they are s
tary ~e.g., speed of 2 mm/s within swarms versus 7 mm/s
solitaries! @20#.

There is also a tendency of individuals to circle inwar
and downwards in the swarms@27#. Probably the stronges
evidence for swarming being induced by predation ari
from studies of trace chemicals exuded by predators@20,28#.
These chemical compounds, which act as cues, can be
fish, invertebrate predators or even from the crushed bo
of Daphnia themselves. The tendency of a population
Daphnia to respond to predator exuded chemicals may
pend on their previous exposure to such a predator@28#.
These results suggest that for most swarms formed du
the growing season, the most likely explanation is the avo
ance of predation by visual predators~generally vertebrates
like planktivorous fish or by invertebrate likeChaoborus sp.!
@19,20,23#. The tendency to form groups benefits a sing
individual, because the movement of many identical in
viduals can distract predators and decrease their attack r
In addition, for each individual, there is a dilution effe
afforded by being within a group when faced with a predat
Swarming inDaphniais likely a permanent behavioral stra
egy in systems where predators are abundant@20#.

III. SIGNAL AND NOISE CHARACTERISTICS

The signal from a singleDaphnia and noise from the
swarm can be measured. A singleDaphnia is shown in
Fig. 2.

Figure 3 shows the time course of the potential measu
at a distance of 1.2 mm behind the abdomen.

The potential consists of both ac and dc components,
here we concentrate on the ac, or oscillatory, compon
Recent experiments have shown that the behavioral
sponses, scored as strikes, exhibit a bandpass characte
with a maximum response between 5 and 15 Hz. Respo
were less frequent at higher~20, 40, and 50 Hz! and lower
~0.1, 0.5, and 1 Hz! test frequencies, with a steep drop-o
below 5 Hz@29#. The shape of the potential at distances o

FIG. 2. The singleDaphnia.
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cm or more is approximately a dipole, and in this work w
shall assume it to be a dipole.

The power spectrum of the experimentalDaphniasignal
is shown in Fig. 4

There are two main frequency components, a broader
around 5 Hz, which results from feeding motions of the a
pendages, and a narrower one at about 7 Hz resulting f
swimming motions. Note that both these oscillatory comp
nents are superimposed on a broad noise background. Fo
sake of simplicity we shall omit the swimming frequenc
and concentrate on the 5 Hz feeding frequency.

In Fig. 5~A! we show the photograph of a swarm in a
aquarium together with the experimental setup~electrodes,
isolation, etc.!. Figures 5~B!–~D! show the time course of the
noise voltage~B! measured at the recording electrode~el!,
together with its related power spectrum~C!, and amplitude
distribution ~D!. We note that the amplitude distribution
well approximated by a Gaussian as shown by the s
curve. The power spectrum is approximately a Lorentz
related to Ornstein-Uhlenbeck noise@30# which itself is gen-
erated from

j̈1S 1

t1
1

1

t2
D j̇1

1

t1t2
j~ t !5A D

t1t2
G~ t !, ~1!

whereG is Gaussian white noise~Wiener process!, i.e.,

^G~ t !&50 and ^G~ t !G~ t8!&52d~ t2t8!, ~2!

FIG. 3. Electric oscillations from a tetheredDaphnia can be
correlated with rhythmic beating of the feeding legs or antenna

FIG. 4. The power spectrum of the experimental singleDaphnia
signal.
0-3
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FIG. 5. A: A photograph of a
Daphniaswarm withref denoting
the reference andel the recording
electrode, respectively. The arrow
points to the 1 mm diameter silve
ball andagar is theagarus isola-
tion preventing direct contact o
Daphnia with the recording elec-
trode. B: A fragment of the volt-
age record. The time series wa
filtered using a high-pass filter a
0.5 Hz. C: Power spectrum of the
recorded swarm voltage. D: Th
voltage probability distribution
extracted from the recorded
swarm signal exhibits a Gaussia
shape.
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and D controls the intensity of fluctuations. The left-han
side of Eq.~1! establishes a second order low-pass filter. T
constantst1 and t2 have the meaning of two correlatio
times, as can be read from the stationary correlation func
~assumingt1.t2)

C~t!5
D

t1
22t2

2 Ft1 expS 2
utu
t1

D2t2 expS 2
utu
t2

D G . ~3!

The analytic expression for the power spectrum reads

Sjj~v!5
2D

@12t1t2v2#21@t11t2#2v2 . ~4!

In the context of swarm noise the parameterst1 andt2 char-
acterize the fictitious dynamics of a stochastic electric sou
which emits the swarm signal. The caset2!t1 corresponds
to the common overdamped limit of the Ornstein–Uhlenbe
process. Later, we need threshold crossing rates for the
of a sinusoidal signalA sin(Vt) and colored Gaussian nois
j(t). For these rates to remain finite the spectral density
to decay with at least the fourth power of the frequency@31#,
hence, botht1 andt2 should be nonvanishing.

In Fig. 6 we fitted Eq.~4! to the measured spectrum@Fig.
5~C!#.

The best fit of Eq.~4! to the experimental data yieldst1
50.13 s andt250.017 s which means that an oscillat
generating such a spectrum is far from being overdamp
the swarm signal is closer to so-called harmonic noise@32#.

IV. SIGNAL DETECTION AND PHASE LOCKING

The classical evaluation of SR with periodic signals p
ceeds by computing the spectral power amplification~SPA!
or the signal-to-noise ratio~SNR! @10#. Here, we will use an
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alternative approach which employs the concept of ph
locking.

Since we are interested in a noise-induced phenome
we have to treat the stochastic generalization of classic ph
locking @33#. The introduction of noise requires one to reco
sider the phase locked situation, originally meaning that
difference between an input and an output signal rema
constant, in terms of finite locking periods which are inte
rupted and separated by short phase slips. When the ave
length of locking episodes assumes values which are la
compared to the signal period it is reasonable to speak a
effective phase synchronization.

These statements are made precise by derivation of a
namic equation for the phase differencew5fout2f in which
is known as the Adler equation@34#

FIG. 6. The experimental power spectrum from Fig. 5 C~dotted
line! and Eq.~4! with constantst150.13 s andt250.017 s~solid
line!. Note that due to the normalization of the experimental sp
trum the noise intensityD is still undetermined.
0-4
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ẇ5D2Ds cosw1j. ~5!

In the framework of stochastic processes one can inter
this dynamics as the motion of a fictitious Brownian partic
which moves in a corrugated and inclined potential lan
scape@cf. Fig. 7#.

HereD is the so-called frequency mismatch, i.e., the d
ference between the natural oscillator frequencyV0 and the
input frequencyV in . Ds is the synchronization bandwidth
The latter term becomes clear when realizing that a lock
episode means that the particle wiggles around inside on
the wells while a noise-induced jump to a neighboring w
corresponds to a phase slip. As can be seen from Eq.~5!, the
potential possesses wells only ifuDu,Ds ; this necessary
condition for phase synchronization says that the sys
generating the output can synchronize only with input s
nals whose detuning is less thanDs .

For the case thatD andDs are independent from the nois
intensity, fluctuationsj(t) can only deteriorate the mecha
nism of phase synchronization. The awesome construc
role fluctuations play in SR has its counterpart in the p
nomenon of noise-induced phase coherence@35#: now both
D andDs are not only functions of the signal amplitudeA but
also of the noise intensityD.

The average duration of locking episodes can be co
puted from an ansatz for the mean square displacement

^w2&5^ẇ&2^Tlock&
212D^Tlock&5p2. ~6!

Average growth ofw2 is decomposed in a drift and a diffu
sive component. In the next section we will briefly revie
how the average frequency^ẇ& and the phase diffusion co
efficient D, not to be mixed with the noise intensityD, can
be derived analytically in the framework of a fully dichoto
mic signal description. Then it will also become clear w
we define a phase slip by the distancep.

From Eq.~6! we can readily write down an expression f
the mean number of signal periods experienced during
average locking episode

^nlock&5
^Tlock&

Tin
5

V in

2p

D
^ẇ&2

FA11S p^ẇ&
D D 2

21G . ~7!

FIG. 7. The stochastic dynamics of the phase differencew can
be understood as the motion of a fictitious Brownian particle in
undulated and tilted potential.
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The limiting cases for the drift and the diffusion dominat
regimes read forD!pu^ẇ&u:

^nlock&5
V in

2p

p

u^ẇ&u
F12

D
pu^ẇ&u

1
1

2 S D
p^ẇ&

D 2

1•••G ~8!

for D@pu^ẇ&u:

^nlock&5
V in

2p

p2

2D F12
1

4
S p^ẇ&

D D 2

1•••G . ~9!

The phenomenon of noise-enhanced signal detec
shows up by a dramatic increase of the quantity^nlock&: un-
der conditions of sufficiently large, albeit subthreshold sig
amplitude and optimal noise, the paddlefish detects m
periodic beats of the singleDaphnia. In the context of our
geometric setup@cf. Fig. 1# the efficiency of detection will
vary from place to place. Hence we will plot the spat
distribution of the quantitŷnlock& to substantiate our centra
thesis.

V. DICHOTOMIC SIGNAL DESCRIPTION

To derive how^ẇ& andD depend onA andD we specify
a dichotomic description of both the outputy(t) and input
x(t) signals. The two states between which the sign
switch back and forth are chosen as21 and11 and can be
connected to the instantaneous phasesfout andf in via

y~ t !5exp@ ifout~ t !#5exp@ ikout~ t !p#, ~10!

x~ t !5exp@ if in~ t !#5exp@ ik in~ t !p#. ~11!

kout(t) and kin(t) are point processes describing the rela
switching events and simply accumulate the number
switches which occurred up to timet since initialization.
Hence by construction the phases are discontinuously
creasing functions of time. Following from its definition, th
phase differencew5fout2f in is also restricted to multiples
of p but increases or decreases discontinuously depen
on whether the output or the input is jumping.

The stochastic dynamics of the phase differencew(t)
5k(t)p is specified by fixing the transition rates betwe
the four states shown in Fig. 8.

Switches of the input occur regularly at all integer halv
of the input signal, i.e., the periodic process is not station
but only cyclostationary

V̂~ t,q!5p (
n52`

`

dS t2
np1q

V D , ~12!

whereq is some initial phase. To achieve stationary sta
tics we have to perform a subsequent averaging with res
to q

^V̂&q5E
0

2p

V̂~ t,q!
dq

2p
5V. ~13!

n

0-5
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The ratesa1 anda2, governing switchings of the output, ar
modeled such that they favor the synchronous states (11,
11 and21,21) above the asynchronous ones (11,21 and
21,11). To achieve this we have to obeya1(A,D)
<a2(A,D).

The time modulated threshold crossing ratesr cr(t) for the
sum of a sinusoidal signalA sin(Vt) and colored Gaussia
noise@cf. Eq. ~1!# were computed in@36#

r cr~ t !5
1

2pAt1t2

expS 2
@12Ā sin~Vt !#2

2s̄2 D
3F expS 2

Ā2

2s̄2D 1
1

2
ĀeA2p

s̄2
cos~Vt !

3erfcS 2
Āe cos~Vt !

A2s̄2 D G ~14!

with dimensionless scaled parameters

Ā5
A

b
, s̄25

D

b2~t11t2!
, e5AV2t1t2, ~15!

where D, t1, and t2 are as in Eq.~1! and b denotes the
threshold. Note that subthreshold signals correspond to
range 0,Ā,1.

Since our theoretical approach used both dichotomic o
put and input, the latter justified by, say, some preproces
of the continuous sinusoidal signal, we can identify the ra
a1 anda2 with

a15
1

2pAt1t2

expS 2
1

2s̄2D expS 2
Ā~11Ā!

s̄2 D , ~16!

FIG. 8. The twice dichotomic description defines the 232-state
system: horizontal transitions describe a switch of the output w
vertical ones correspond to switches of the input. The synchron
states, i.e.,11,11 and21,21, are favored by the conditiona1

<a2 ~for further explanations see text!.
03191
he

t-
g
s

a25
1

2pAt1t2

expS 2
1

2s̄2D expS 1
Ā~12Ā!

s̄2 D . ~17!

The common prefactor of both ratesa0(s̄,t1 ,t2) is indepen-
dent of the normalized signal amplitudeĀ. The amplitude
dependence in the exponent is nonstandard since it invo
a square, diminishing both rates for large amplitude sign
Hence the maximum discrepancy betweena1 and a2 does
not occur forĀ51 as is the case for Kramers-like rates@cf.
Fig. 9#.

With the rates given by Eqs.~12! and ~16! and ~17! we
can write down the master equation governing the proba
listic evolution of the phase differencew

]Pk~ t !

]t
5V̂~Pk112Pk!1gk21Pk212gkPk , ~18!

where we have denotedPk5prob(w5kp) andgk5a1 for k
even andgk5a2 for k odd. From there it is straightforward
to calculate

^ẇ&52V1
p

2
~a11a2!2

p

2
~a22a1!^cosw&. ~19!

Note that Eq.~19! is the analog to the averaged Adler equ
tion ~5! when identifying

D5
p

2
~a11a2!2V and Ds5

p

2
~a22a1!. ~20!

Note also that viaa1 and a2 now bothD and Ds are noise
dependent. The quantitŷcosw& turns out to be the input–
output correlator@37#. Its asymptotic value can be compute
yielding

le
us

FIG. 9. In contrast to the standard Kramers’ ratesa1/2

5a0(s̄,t1 ,t2)exp(7Ā/2s̄2) ~dashed! the expressions used in Eq
~16! and ~17! ~solid lines! are not monotonously diverging with

increasing signal amplitude; all curves fors̄51.
0-6
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BEHAVIORAL STOCHASTIC RESONANCE: HOW A . . . PHYSICAL REVIEW E63 031910
lim
t→`

^cosw&5^s* &5
a22a1

2~V/p!1~a11a2!
, ~21!

hence it is also completely determined by the rates.
The phase diffusion coefficientD is defined by the rela-

tion

D5
1

2
] t@^w

2&2^w&2#. ~22!

In principle, its computation from the master equation~18! is
straightforward@38#; some subtle difficulties for strictly pe
riodic input signals have been discussed in@15#. The result
reads

D5
p2

2 Fa11a2

2
1S V

p
2~a22a1! D ^s* &

2S 2
V

p
2~a11a2! D ^s* &22

a22a1

2
^s* &3G . ~23!

In Fig. 10 ~top and bottom! we present double logarithmi
plots of the average output frequencyV1^ẇ& ~normalized to
V) and of the phase diffusion coefficientD ~normalized to
p2/2), both as functions of the ‘‘natural’’ detector frequen
V05V1D ~normalized toV) for various normalized signa
amplitudesĀ50,0.1, . . . ,0.5.

VI. GEOMETRIC DEPENDENCE OF A AND D

Inserting the expressions for^ẇ& andD into Eq. ~7!, and
by virtue of Eqs.~16! and ~17! for the ratesa1 anda2, we
can computênlock&, i.e., the average number of periods t
fish can detect before a phase slip occurs, for givenV,Ā,s̄2.
What remains is to express~rescaled! signal amplitude and
~rescaled! noise intensity as functions of the distancesr and
R, respectively@cf. Fig. 1#.

As said before, the electric field of a singleDaphnia is
assumed to be a dipole field. As is known from classi
electrodynamics, one has to distinguish between differen
gimes:

near-field limit d!r !l,

intermediate region d!r;l,

far-field limit d!l!r ,

whered, l, and r denote the extension of the dipole, th
wavelength of the radiated ac field, and the distance betw
the dipole and the observation point, respectively. In our c
d, theDaphniasize, is of the order of a few millimeters an
the wavelengthl ~for an oscillation of 5–10 Hz! far beyond
the scale of a kilometer, hence, the near-field limit applies
this limit the electric dipole field reads
03191
l
e-

en
e

n

EW ~rW !;
3nW ~nW •pW d!2pW d

r 3
~24!

;
pd

r 3
~nW 2 cosQ2aW cosF sinQ2bW sinF cosQ!,

~25!

where pW d is the dipole moment of theDaphnia and aW , bW ,
and nW constitute a right-handed orthonormal basis. WithnW
playing the role of thez axis, theDaphnia dipole moment
can be represented in spherical coordinates, i.e.,pW d
5(pd ,F,Q), cf. Fig. 11.

Considering only the field component alongnW we find the
following result for the signal amplitude

A;
pd

r 3 cos~Q! ~26!

FIG. 10. The frequency and phase locking regions appea
these plots as plateaus around zero of the ordinate. The width o

plateau grows with increasing amplitudeĀ50,0.1, . . . ,0.5. The

tips in the upper right correspond tos̄→` where maximum flip-
ping rate of the detector, given by@2pAt1t2#21, is experienced.
0-7
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which incorporates two important features: The dropping
the amplitude with respect to the distance according to ar 23

law, and the fact that the amplitude also depends on
Daphniaorientation: Foru50 or u5p ~emitting in the di-
rection parallel torW) the fish detects theDaphnia best1

whereas foru5p/2 ~emitting in the direction perpendicula
to rW) the Daphnia is somewhat ‘‘invisible.’’

In what follows we will only consider the best case, i.
we write

A5C1

1

r 3 , ~27!

where the proportionality constantC1 is achieved by a fit to
the measured pair (r 52.5 cm,A51 mV) yielding

C15
125

8
mV cm3. ~28!

To derive how the noise intensityD depends on the ge
ometry we employ a continuum approach to model
Daphnia swarm. In the reference frame of the geometri
center of theDaphnia cloud @cf. Fig. 11# we describe the
distribution of the population by the densityr(xW ). It is nor-
malized to the total numberN of Daphnia

E r~xW !d3x5N. ~29!

Since we restrict ourselves to spherical distributions, i
r(xW )5r(x), the center of mass coincides with the geome
cal center

1The transition fromu to u2p simply corresponds to a signa
which is phase shifted byp

FIG. 11. The geometrical configuration illustrating our notati
used in the derivations~see text!.
03191
f

e

,

e
l

.,
-

E xWr~x!d3x50W . ~30!

In accordance with the above near-field limit~24! the total
electric field at the detector site~i.e., at the pointRW ) reads
@cf. Fig. 11#

EW ~RW ,t !;E 3NW ~xW !„NW ~xW !•pW ~xW ,t !…2pW ~xW ,t !

uRW 2xW u3
r~x!d3x1c.c.

~31!

with

NW ~xW !5
RW 2xW

uRW 2xW u
~32!

and

pW ~xW ,t !5pdLW ~xW !ei [v(xW )t2c(xW )] . ~33!

The unit vectorLW (xW ) accounts for the local orientation of th
~net!dipole moment ofDaphnia in a little cube centered
aroundxW . Assuming the local orientationsLW (xW ), frequencies
v(xW ) and phasesc(xW ) to be independent random numbe
corresponds to the assumption of incoherent activity
Daphnia in the swarm.

Then, the correlation function is proportional to

^EW ~RW ,t !•EW * ~RW ,t8!&;pd
2E E d3x d3x8

r~x!

uRW 2xW u3
r~x8!

uRW 2xW8u3

3^@3NW ~xW !„NW ~xW !•LW ~xW !…2LW ~xW !#

•@3NW ~xW8!„NW ~xW8!•LW ~xW8!…2LW ~xW8!#&

3^ei [v(xW )t2v(xW8)t8]&^e2 i [c(xW )2c(xW8)]&.

~34!

Due to the random phase assumption the related term
brackets will only survive in caseDc50, however, this
means only forxW5xW8. Hence

^e2 i [c(xW )2c(xW8)]r~x8!&→d~xW2xW8!. ~35!

The first exponential in brackets in Eq.~34! will generate the
basic structure of the Ornstein-Uhlenbeck~OU! spectrum@cf.
Eq. ~4!#

^ei [v(xW )(t2t8)]&→
1

@12t1t2v2#21@t11t2#2v2 ~36!

from which we conclude that

D;pd
2E r~x!

uRW 2xW u6
^3„NW ~xW !•LW ~xW !…21LW 2~xW !&d3x ~37!
0-8
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;pd
2E r~x!

uRW 2xW u6
^3 cos2g~xW !11&d3x, ~38!

whereg(xW ) is the angle between the unit vectorsNW (xW ) and
LW (xW ) @cf. Fig. 11#. Assuming this local angle to be equidi
tributed over the range@0,2p# and performing the averag
yields a factor 5/2.

The remaining integral

D;pd
2E r~x!

uRW 2xW u6
d3x ~39!

can be evaluated in spherical coordinates and, assum
Daphnia to be equidistributed inside the swarm, i.e.,r(x)

5N@ 4
3 p(L/2)3#21, yields

D5C2

N

R6

1

S 12
L/2

R D 3S 11
L/2

R D 3 , ~40!

whereC2 is a related proportionality constant. We note th
for R→L/2 ~from above! a third order pole (R2L/2)23 in
the intensity shows up due to the fact that the detector
lects signal power fromDaphniain the immediate vicinity of
the projected contact point; of course, when approaching
swarm too close, i.e., (R2L/2);O(d), the dipole approxi-
mation of the electric field loses significance.

In the other extreme,L/2!R, a rapid decrease accordin
to an R26 law indicates that the extension of theDaphnia
cloud becomes unimportant. Due to the used near-field l
we also have to obeyR!l; however, this upper bound i
practically irrelevant because at and beyond this point
intensity is negligible anyway.

Again, the proportionality constantC2 occurring in Eq.
~40! can be fixed by comparison with experimental data@1#.
Thus for D51 (mV) 2 Hz21, L/252 cm, R53 cm, and
N5200 we find

C25
5

8
~mV!2 Hz21 cm6. ~41!

Being furnished with formulas~28! and ~41! we have to
determineĀ ands̄2 according to Eq.~15!. To this end we fix
the thresholdb such that the valueĀ51 is reached when the
distance to theDaphnia is 1 cm which yields the valueb
5125/8 mV. This means the suprathreshold region co
cides with the region where the dipole approximationd
!r ) loses significance. In this way we findĀ(r ) and
s̄(R,L,N) which we can plug into the expression for th
rates~16! and ~17!. These are used to compute asympto

^ẇ& andD which themselves are inserted into Eq.~7!, even-
tually yielding ^nlock&(r ,R,L,N).

Before evaluating our analytic formulas numerically w
have to mention a problem that arises from the fitted val
for t1 andt2 @cf. Sec. III#. As is obvious from Eqs.~16! and
~17! the maximal rate~occurring for s̄→`) is given by
03191
ng

t

l-

e

it

e

-

c

s

@2pAt1t2#21 Hz. With t150.13 s andt250.017 s we
thus find thata1/2<3.4 Hz which means the detecting un
switches much too slowly. However, since detecting sites
spread across the rostrum in abundance we may assume
the effective switching rate is much higher. Hence we sc
up the prefactor of both rates until the expected effect
comes visible.

VII. RESULTS

We visualize the results in the following way: We plac
the singleDaphnia in the origin of our coordinate system
and fix the center of theDaphnia cloud along thex axis at
the position (L,0,0); a suitable translation and three rotatio
will always render this setup possible. Then each tri
(x,y,z) determines a position of the predator relative to t
prey, i.e.,r 5Ax21y21z2 and the distance between the ce
ter of the Daphnia swarm and the detectorR is
A(x2L)21y21z2.

For the swarm diameter we assume a valueL
5100 cm; together with the density of 1000–9000 per li
mentioned in Sec. II we infer a number of up toN
55 000 000Daphnia clumping in the swarm. With these
numbers at hand we can compute the value^nlock& for each
position of the predator relative to the static prey and
static swarm.

To give the reader a realistic impression of the geome
dimensions we depict the swarm~big white ball! and the
single Daphnia ~in the center of the little white spot! on a
black background, indicating the nondetectable region,
Fig. 12.

The gray rectangle contains the region relevant for S
We zoomed this region and display our final result in t
sequence of images in Fig. 13.

The sequence shows the spatial distribution of the qu
tity ^nlock& with gray scale coding values~cf. the gray value
bar!. The singleDaphnia is indicated by the little black spo
inside the white sphere. The latter describes the region

FIG. 12. TheDaphnia swarm with a diameter of 100 cm~big
white sphere! and the singleDaphnia centered in the small white
spot on a black background indicating the nondetectable reg
The gray rectangle contains the region zoomed in Fig. 13.
0-9
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suprathreshold signals, i.e., places were the fish can d
the Daphniaeven in the absence of swarm noise. Moreov
within the white circle the dipole approximation loses s
nificance. The depicted rectangle extends from 10 cm lef
the swarm boundary up to 2 cm inside and over 6 cm in
vertical direction. From Fig. 13 we see that the singleDaph-
nia has to dive through a ‘‘firewall:’’ Optimal noise widen
the detection area beyond the initial white circle.

FIG. 13. The sequence of images shows the spatial distribu
of the quantitŷ nlock& with values coded by gray values~cf. the gray
value bar!. The white region around the singleDaphnia~black cen-
tral spot! codes the suprathreshold signal region which also viola
the dipole approximation; in this region the predator can detect
prey even in the absence of swarm noise. At intermediate dista
('5 cm) to the swarm the singleDaphnia has to dive through a
‘‘firewall’’ established by the optimal noise condition. As expecte
the geometry of contour lines reflects the compromise betw
spheres around the singleDaphniaand contour lines of noise inten
sity spreading concentrically around the swarm boundary.
R

F

03191
ect
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VIII. SUMMARY AND OUTLOOK

We have resumed the idea, first expressed by Rus
et al. @1#, that a nearby swarm ofDaphniaprovides a natural
source of electric noise essential for the mechanism of
We modeled the swarm noise as OU noise generated by
coherentDaphniaactivity. The rapid geometric decay of th
noise intensityD(R) and of the dipole signal amplitudeA(r )
~near-field limit! restricts the spatial region of SR to a narro
band around the swarm boundary.

The quantity we used to measure noise-induced widen
of the detection area was the mean duration of locking e
sodes@15# normalized to the period 2p/V of the input sig-
nal. The description of~1:1! noise-induced phase locking i
based on the phase differencew between a dichotomic de
tector~predator! and a two-state, i.e., preprocessed harmo
input signal ~prey!. We employed analytic expressions fo
the average frequencŷẇ& and the phase diffusion coeffi
cientD derived in@14#. These are based on two ratesa1 and
a2 which, in this work, we adopted from@36# and which
were derived for a threshold system driven by OU noise.

Most of the free model parameters were fitted to exist
experimental data. The maximum flipping rate of the tw
state detector was scaled up to render a pronounced ef
this tuning may be justified by accounting for cooperati
effects of many detecting sites spread across the rostrum
abundance. Numeric evaluation of our analytic formulas s
ports the notion of noise-enhanced detectability quant
tively: At a certain distance the swarm builds a ‘‘firewall
which widens the detection area around a singleDaphnia
during its ‘‘passage.’’

Synchronization of noisy electrosensitive cells in the ro
trum of a paddlefish with an externally applied electric sign
was shown in an experiment@16#. For a 5 Hzstimulus a 1:17
locking mode was observed. Extension of our analysis
yond the assumed 1:1 locking mode requires further ana
cal work. An improved understanding of cooperative info
mation processing done by many detecting sites in
rostrum and a better estimation of time constants and par
eters would be desirable for planning a behavioral exp
ment designed to test the predicted effect.
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